Las leyes de la termodinámica (segunda parte)

 2. La segunda ley de la termodinámica

A primera vista, la primera ley de la termodinámica puede parecer una gran noticia. Si la energía nunca se crea ni se destruye, eso significa que la energía puede simplemente ser reciclada una y otra vez, ¿cierto?

Pues… sí y no. La energía no puede ser creada ni destruida, pero puede cambiar de formas más útiles a formas menos útiles. La verdad es que, en cada transferencia o transformación de energía en el mundo real, cierta cantidad de energía se convierte en una forma que es inutilizable (incapaz de realizar trabajo). En la mayoría de los casos, esta energía inutilizable adopta la forma de calor.
Aunque de hecho el calor puede realizar trabajo bajo las circunstancias correctas, nunca se puede convertir en otros tipos de energía (que realicen trabajo) con una eficiencia del 100%. Por lo que cada vez que ocurre una transferencia de energía, cierta cantidad de energía útil pasa de la categoría de energía útil a la inútil.

El calor aumenta lo aleatorio del universo

Si el calor no realiza trabajo, entonces ¿qué hace exactamente? El calor que no realiza trabajo aumenta la aleatoriedad (desorden) del universo. Esto puede parecer un gran salto de lógica, así que vamos a dar un paso atrás y ver cómo puede ser.
Cuando tienes dos objetos (dos bloques del mismo metal, por ejemplo) a diferentes temperaturas, tu sistema está relativamente organizado: las moléculas están separadas por velocidad, en el objeto más frío se mueven lentamente y en el objeto más caliente se mueven rápidamente. Si fluye calor del objeto más caliente hacia el objeto más frío (como sucede espontáneamente), las moléculas del objeto caliente disminuyen su velocidad, y las moléculas del objeto frío aumentan su velocidad, hasta que todas las moléculas se estén moviendo a la misma velocidad promedio. Ahora, en lugar de tener moléculas separadas por su velocidad, simplemente tenemos un gran conjunto de moléculas a la misma velocidad, una situación menos ordenada que nuestro punto de partida.
El sistema tenderá a moverse hacia esta configuración más desordenada simplemente porque es estadísticamente más probable que la configuración de temperaturas separadas (es decir, hay muchos más estados posibles que corresponden a la configuración desordenada).

La entropía y la segunda ley de la termodinámica

El grado de aleatoriedad o desorden en un sistema se llama entropía. Puesto que sabemos que cada transferencia de energía resulta en la conversión de una parte de energía en una forma no utilizable (como calor) y que el calor que no realiza trabajo se destina a aumentar el desorden del universo, podemos establecer una versión relevante para la biología de la segunda ley de la termodinámica: cada transferencia de energía que se produce aumentará la entropía del universo y reducirá la cantidad de energía utilizable disponible para realizar trabajo (o en el caso más extremo, la entropía total se mantendrá igual). En otras palabras, cualquier proceso, como una reacción química o un conjunto de reacciones conectadas, procederá en una dirección que aumente la entropía total del universo.
Para resumir, la primera ley de termodinámica habla sobre la conservación de la energía entre los procesos, mientras que la segunda ley de la termodinámica trata sobre la direccionalidad de los procesos, es decir, de menor a mayor entropía (en el universo en general).

La entropía en los sistemas biológicos

Una de las implicaciones de la segunda ley de la termodinámica es que, para que un proceso se lleve a cabo, de algún modo debe aumentar la entropía del universo. Esto inmediatamente puede plantear algunas preguntas cuando se piensa en organismos vivos, como tú. Después de todo ¿acaso no eres un conjunto de materia bastante ordenado? Cada célula de tu cuerpo tiene su propia organización interna; las células se organizan en tejidos y los tejidos en órganos; y todo tu cuerpo sostiene un cuidadoso sistema de transporte, intercambio y comercio que te mantiene vivo. Así, a primera vista, puede no ser claro cómo tú o incluso una simple bacteria representan un aumento en la entropía del universo.
Para aclarar esto, revisemos los intercambios de energía que ocurren en tu cuerpo cuando caminas, por ejemplo. Al contraer los músculos de las piernas para mover tu cuerpo hacia delante, estás utilizando energía química de moléculas complejas, como la glucosa, y la conviertes en energía cinética (y, si estás caminando cuesta arriba, energía potencial). Sin embargo, esto lo haces con eficiencia muy baja: una gran parte de la energía de tus fuentes de combustible simplemente se transforma en calor. Parte del calor mantiene tu cuerpo caliente, pero gran parte se disipa en el ambiente circundante.

Si quieres conocer más sobre las leyes de la Termodinámica, pincha aquí.

Agradecimientos a la khan Academy por el trabajo de divulgación que realizan. Este artículo es un derivado modificado de “The laws of thermodynamics (Las leyes de la termodinámica)”, de OpenStax College, Biología (CC BY 3,0). Descarga gratis el artículo original en http://cnx.org/contents/185cbf87-c72e-48f5-b51e-f14f21b5eabd@9,85:30/Biology. El artículo modificado está autorizado bajo una licencia CC BY-NC-SA 4,0.